# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Ethyl 1-butyl-6-methyl-2-phenyl-4thioxo-1,4-dihydropyrimidine-5carboxylate<sup>1</sup>

#### José R. Sabino,<sup>a</sup>\* Ivo Vencato,<sup>b</sup> Rodrigo M. Bastos<sup>c</sup> and Silvio Cunha<sup>c</sup>

<sup>a</sup>Instituto de Física – UFG, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil, <sup>b</sup>Ciências Exatas e Tecnológicas – UEG, 75133-050 Anápolis, GO, Brazil, and <sup>c</sup>Instituto de Química, UFBa, 40170-290 Salvador, BA, Brazil Correspondence e-mail: jrsabino@if.ufg.br

Received 2 April 2007; accepted 21 April 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean  $\sigma$ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.052; wR factor = 0.135; data-to-parameter ratio = 9.5.

The title compound, C<sub>18</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>S, is of interest with respect to antibacterial and anticancer activity and it has shown good trypanocidal activity. The molecular packing lacks classical hydrogen bonds, being mediated only by weak van der Waals forces.

#### **Related literature**

For the synthesis, see: Cunha et al. (2007). A butyl group on atom N1 in this structure replaces a hydroxyethyl group in the derivatives described in the preceding papers (Sabino, Lariucci et al., 2007; Sabino, Vencato et al., 2007). Owing to the different chemical nature of the butyl group, the title compound does not pack in the same manner and lacks the intermolecular hydrogen-bond contacts observed in the previous derivatives.



#### **Experimental**

#### Crystal data

| $C_{18}H_{22}N_2O_2S$       | b = 7.2840 (14)  Å              |
|-----------------------------|---------------------------------|
| $M_r = 330.45$              | c = 12.5885 (13)  Å             |
| Monoclinic, P2 <sub>1</sub> | $\beta = 115.591 \ (9)^{\circ}$ |
| a = 10.9870 (18)  Å         | $V = 908.6 (3) \text{ Å}^3$     |

<sup>1</sup> Structural studies of 4-thioxopyrimidines. Part 3.

Z = 2Cu Ka radiation  $\mu = 1.66 \text{ mm}^{-1}$ 

#### Data collection

```
Enraf-Nonius CAD-4
  diffractometer
Absorption correction: \psi scan
  (North et al., 1968)
   T_{\min} = 0.594, T_{\max} = 0.922
2129 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$  $wR(F^2) = 0.136$ S = 1.092034 reflections 214 parameters 1 restraint

T = 297 (2) K  $0.35 \times 0.25 \times 0.05 \text{ mm}$ 

2034 independent reflections 1907 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.047$ 2 standard reflections frequency: 120 min intensity decay: 2%

H-atom parameters constrained  $\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-1}$  $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 270 Friedel pairs Flack parameter: 0.10 (3)

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq and Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB. We also thank CNPq for a research fellowship to SC and IV.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2100).

#### References

- Cunha, S., Bastos, R. M., Silva, P. O., Costa, G. A. N., Vencato, I., Lariucci, C., Napolitano, H. B., Oliveira, C. M. A., Kato, L., Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111-119.
- Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sabino, J. R., Lariucci, C., Bastos, R. M. & Cunha, S. (2007). Acta Cryst. E63, 02850.
- Sabino, J. R., Vencato, I., Bastos, R. M. & Cunha, S. (2007). Acta Cryst. E63, o2851.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o2852 [doi:10.1107/S1600536807019964]

#### Ethyl 1-butyl-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate

#### J. R. Sabino, I. Vencato, R. M. Bastos and S. Cunha

#### Comment

In continuation of our solid-state studies of bioactive thioxopyrimidine, we performed the crystallographic characterization of the title 4-thioxopyrimidine (I), which exhibited a lowered antifungal but enhanced trypanocidal activities compared to related compounds (Cunha *et al.*, 2007).

The molecule of (I) is depicted in Fig. 1. This derivative differs from those of Parts 1 and 2 by a substituent on the ring atom N1, where (I) has a butyl group instead of a hydroxyethyl group. The conformation of compound (I) is defined by steric effects. The pyrimidine ring is planar with an r.m.s. deviation of 0.022 Å. With reference to this plane, the phenyl ring is rotated by  $65.0 (1)^\circ$ , approaching a *gauche* conformation. The torsion angles C4—C5—C14—O15 and C20—C19—N1—C6 are -99.3 (4)° and -92.9 (3)°, respectively. Bond lengths are within the expected ranges with the exception of the C2–C7 and C5–C14 bonds which are elongated by an average of 0.035 Å from the formal single bond distance.

It is interesting to note that the crystal packing of compound (I) is maintained by van der Waals forces only; it does not form dimers involving C=O··· $\pi$ -ring interactions as observed in the previous derivatives. It is supposed that the steric inaccessibility due to the long butyl substituent group prevents the pyrimidine ring stacking. The packing is shown in Fig. 2.

#### Experimental

Compound (I) (m.p. 447.6–448.6 K) was prepared according to a known procedure (Cunha *et al.*, 2007). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in CHCl<sub>3</sub> at room temperature.

#### Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and  $U_{iso}(H) = 1.2U_{eq}(C)$  for other atoms. The C18 methyl atom were modelled as a disordered group over two sites with refined occupancies 0.80 (2) and 0.20 (2), and refined with equal displacement parameter constraints. In consequence, the bond length C17–C18 was poorly determined. The whole carboxylate group is possibly disordered by a rotation around the C5–C14  $\sigma$ -bond, but this could not be modelled reliably.

#### **Figures**



Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitray radius.



Fig. 2. Packing diagram of (I).

### Ethyl 1-butyl-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate

| Crystal data                    |                                      |
|---------------------------------|--------------------------------------|
| $C_{18}H_{22}N_2O_2S$           | $F_{000} = 352$                      |
| $M_r = 330.45$                  | $D_{\rm x} = 1.208 {\rm ~Mg~m}^{-3}$ |
| Monoclinic, P2 <sub>1</sub>     | Cu Kα radiation<br>λ = 1.54180 Å     |
| Hall symbol: P 2yb              | Cell parameters from 25 reflections  |
| a = 10.9870 (18)  Å             | $\theta = 12.9 - 40.6^{\circ}$       |
| b = 7.2840 (14)  Å              | $\mu = 1.66 \text{ mm}^{-1}$         |
| c = 12.5885 (13)  Å             | T = 297 (2)  K                       |
| $\beta = 115.591 \ (9)^{\circ}$ | Prism, yellow                        |
| $V = 908.6 (3) \text{ Å}^3$     | $0.35\times0.25\times0.05~mm$        |
| Z = 2                           |                                      |

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer                            | $\theta_{max} = 67.1^{\circ}$ |
|-----------------------------------------------------------------|-------------------------------|
| T = 297(2)  K                                                   | $\theta_{\min} = 3.9^{\circ}$ |
| $\omega/2\theta$ scans                                          | $h = -13 \rightarrow 11$      |
| Absorption correction: $\psi$ scan (North <i>et al.</i> , 1968) | $k = -1 \rightarrow 8$        |
| $T_{\min} = 0.594, T_{\max} = 0.922$                            | $l = 0 \rightarrow 15$        |
| 2129 measured reflections                                       | 2 standard reflections        |
| 2034 independent reflections                                    | every 120 min                 |
| 1907 reflections with $I > 2\sigma(I)$                          | intensity decay: 2%           |
| $R_{\rm int} = 0.047$                                           |                               |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.1111P)^2 + 0.0314P]$<br>where $P = (F_o^2 + 2F_c^2)/3$       |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | $(\Delta/\sigma)_{\rm max} < 0.001$                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.052$ | $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$                                     |
| $wR(F^2) = 0.136$               | $\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$                                    |
| <i>S</i> = 1.09                 | Extinction correction: SHELXL97,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |

2034 reflections 214 parameters 1 restraint H-atom parameters constrained Extinction coefficient: 0.034 (3) Absolute structure: Flack (1983), 270 Friedel pairs Flack parameter: 0.10 (3)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x           | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1)  |
|------|-------------|--------------|--------------|-------------------------------|------------|
| S    | 0.77081 (9) | 0.15710 (13) | 0.75355 (7)  | 0.0651 (3)                    |            |
| N1   | 0.7310 (2)  | 0.5282 (3)   | 0.46126 (19) | 0.0458 (5)                    |            |
| C2   | 0.7929 (2)  | 0.3596 (4)   | 0.4803 (2)   | 0.0423 (6)                    |            |
| N3   | 0.8080 (2)  | 0.2499 (4)   | 0.5663 (2)   | 0.0466 (5)                    |            |
| C4   | 0.7614 (3)  | 0.3022 (4)   | 0.6479 (2)   | 0.0463 (6)                    |            |
| C5   | 0.7055 (2)  | 0.4821 (4)   | 0.6357 (2)   | 0.0462 (6)                    |            |
| C6   | 0.6850 (3)  | 0.5898 (4)   | 0.5420 (2)   | 0.0476 (6)                    |            |
| C7   | 0.8475 (2)  | 0.2935 (4)   | 0.3973 (2)   | 0.0435 (6)                    |            |
| C8   | 0.7920 (3)  | 0.1380 (5)   | 0.3314 (2)   | 0.0508 (7)                    |            |
| H8   | 0.7191      | 0.0806       | 0.3365       | 0.061*                        |            |
| C9   | 0.8442 (3)  | 0.0673 (6)   | 0.2581 (3)   | 0.0632 (8)                    |            |
| Н9   | 0.8066      | -0.0378      | 0.2142       | 0.076*                        |            |
| C10  | 0.9521 (3)  | 0.1521 (7)   | 0.2496 (3)   | 0.0665 (9)                    |            |
| H10  | 0.9874      | 0.1041       | 0.2002       | 0.08*                         |            |
| C11  | 1.0069 (3)  | 0.3070 (7)   | 0.3139 (3)   | 0.0681 (10)                   |            |
| H11  | 1.0784      | 0.3652       | 0.3069       | 0.082*                        |            |
| C12  | 0.9574 (3)  | 0.3781 (5)   | 0.3895 (3)   | 0.0575 (8)                    |            |
| H12  | 0.997       | 0.4814       | 0.4346       | 0.069*                        |            |
| C13  | 0.6183 (4)  | 0.7740 (6)   | 0.5228 (3)   | 0.0734 (10)                   |            |
| H13A | 0.542       | 0.7765       | 0.4471       | 0.11*                         |            |
| H13B | 0.6814      | 0.8674       | 0.5259       | 0.11*                         |            |
| H13C | 0.5888      | 0.7963       | 0.5832       | 0.11*                         |            |
| C14  | 0.6638 (3)  | 0.5473 (5)   | 0.7281 (3)   | 0.0556 (7)                    |            |
| 015  | 0.5505 (2)  | 0.5468 (6)   | 0.7192 (2)   | 0.0825 (9)                    |            |
| O16  | 0.7694 (2)  | 0.6091 (5)   | 0.82076 (18) | 0.0664 (7)                    |            |
| C17  | 0.7489 (5)  | 0.6655 (11)  | 0.9216 (4)   | 0.1002 (18)                   |            |
| H17A | 0.6863      | 0.7678       | 0.9003       | 0.12*                         |            |
| H17B | 0.7103      | 0.565        | 0.9474       | 0.12*                         |            |
| C18A | 0.8742 (8)  | 0.719 (3)    | 1.0149 (7)   | 0.154 (6)                     | 0.807 (19) |
| H18A | 0.8707      | 0.7003       | 1.089        | 0.231*                        | 0.807 (19) |
| H18B | 0.8908      | 0.8461       | 1.0063       | 0.231*                        | 0.807 (19) |
| H18C | 0.9455      | 0.6458       | 1.0122       | 0.231*                        | 0.807 (19) |
| C18B | 0.843 (4)   | 0.569 (11)   | 1.019 (3)    | 0.154 (6)                     | 0.193 (19) |
| H18D | 0.8499      | 0.625        | 1.0903       | 0.231*                        | 0.193 (19) |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H18E | 0.93       | 0.573      | 1.0174     | 0.231*      | 0.193 (19) |
|------|------------|------------|------------|-------------|------------|
| H18F | 0.815      | 0.4439     | 1.0157     | 0.231*      | 0.193 (19) |
| C19  | 0.7021 (3) | 0.6331 (5) | 0.3526 (2) | 0.0546 (7)  |            |
| H19A | 0.778      | 0.6213     | 0.3329     | 0.066*      |            |
| H19B | 0.6928     | 0.762      | 0.367      | 0.066*      |            |
| C20  | 0.5751 (3) | 0.5694 (5) | 0.2488 (2) | 0.0565 (7)  |            |
| H20A | 0.4982     | 0.5836     | 0.2668     | 0.068*      |            |
| H20B | 0.5832     | 0.4404     | 0.2338     | 0.068*      |            |
| C21  | 0.5532 (4) | 0.6817 (7) | 0.1401 (2) | 0.0729 (10) |            |
| H21A | 0.55       | 0.8108     | 0.1576     | 0.087*      |            |
| H21B | 0.6297     | 0.6638     | 0.1219     | 0.087*      |            |
| C22  | 0.4257 (5) | 0.6321 (9) | 0.0332 (3) | 0.0909 (13) |            |
| H22A | 0.4174     | 0.7079     | -0.032     | 0.136*      |            |
| H22B | 0.3493     | 0.6514     | 0.0499     | 0.136*      |            |
| H22C | 0.4293     | 0.5054     | 0.0137     | 0.136*      |            |

# Atomic displacement parameters $(\text{\AA}^2)$

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| S    | 0.0847 (5)  | 0.0628 (5)  | 0.0606 (4)  | 0.0110 (4)   | 0.0435 (4)  | 0.0122 (4)   |
| N1   | 0.0506 (11) | 0.0397 (12) | 0.0433 (11) | 0.0013 (10)  | 0.0166 (9)  | -0.0012 (10) |
| C2   | 0.0426 (11) | 0.0394 (14) | 0.0428 (12) | -0.0002 (10) | 0.0163 (10) | -0.0022 (11) |
| N3   | 0.0534 (11) | 0.0428 (13) | 0.0476 (11) | 0.0064 (11)  | 0.0255 (9)  | 0.0035 (11)  |
| C4   | 0.0426 (12) | 0.0493 (15) | 0.0463 (13) | -0.0003 (12) | 0.0186 (10) | -0.0024 (13) |
| C5   | 0.0388 (11) | 0.0492 (16) | 0.0475 (13) | -0.0005 (11) | 0.0157 (9)  | -0.0088 (12) |
| C6   | 0.0448 (12) | 0.0441 (14) | 0.0470 (13) | 0.0032 (11)  | 0.0134 (10) | -0.0076 (12) |
| C7   | 0.0437 (12) | 0.0437 (14) | 0.0441 (12) | 0.0013 (11)  | 0.0200 (9)  | 0.0026 (12)  |
| C8   | 0.0529 (13) | 0.0488 (17) | 0.0592 (14) | -0.0056 (13) | 0.0322 (11) | -0.0033 (14) |
| C9   | 0.0650 (16) | 0.070 (2)   | 0.0627 (17) | -0.0080 (16) | 0.0350 (14) | -0.0179 (18) |
| C10  | 0.0630 (16) | 0.087 (3)   | 0.0629 (16) | 0.008 (2)    | 0.0401 (13) | 0.002 (2)    |
| C11  | 0.0493 (14) | 0.088 (3)   | 0.078 (2)   | -0.0044 (17) | 0.0380 (14) | 0.005 (2)    |
| C12  | 0.0467 (13) | 0.0606 (18) | 0.0642 (17) | -0.0108 (13) | 0.0230 (12) | -0.0040 (16) |
| C13  | 0.086 (2)   | 0.057 (2)   | 0.068 (2)   | 0.026 (2)    | 0.0248 (17) | -0.0021 (18) |
| C14  | 0.0483 (13) | 0.0607 (19) | 0.0589 (15) | 0.0017 (14)  | 0.0243 (11) | -0.0098 (15) |
| 015  | 0.0518 (11) | 0.118 (3)   | 0.0857 (15) | 0.0043 (14)  | 0.0368 (10) | -0.0215 (18) |
| 016  | 0.0597 (11) | 0.0851 (18) | 0.0565 (11) | -0.0044 (12) | 0.0269 (9)  | -0.0261 (12) |
| C17  | 0.096 (3)   | 0.136 (5)   | 0.077 (2)   | -0.001 (3)   | 0.044 (2)   | -0.045 (3)   |
| C18A | 0.100 (5)   | 0.269 (19)  | 0.080 (3)   | -0.018 (7)   | 0.027 (3)   | -0.099 (8)   |
| C18B | 0.100 (5)   | 0.269 (19)  | 0.080 (3)   | -0.018 (7)   | 0.027 (3)   | -0.099 (8)   |
| C19  | 0.0628 (15) | 0.0433 (16) | 0.0532 (14) | 0.0017 (13)  | 0.0208 (12) | 0.0074 (14)  |
| C20  | 0.0618 (15) | 0.0568 (18) | 0.0475 (14) | 0.0066 (15)  | 0.0204 (11) | 0.0068 (15)  |
| C21  | 0.085 (2)   | 0.080 (3)   | 0.0484 (15) | -0.003 (2)   | 0.0241 (14) | 0.0064 (18)  |
| C22  | 0.109 (3)   | 0.093 (3)   | 0.0504 (16) | -0.009 (3)   | 0.0157 (17) | 0.003 (2)    |

## Geometric parameters (Å, °)

| SC4   | 1.666 (3) | C14—O15 | 1.201 (3) |
|-------|-----------|---------|-----------|
| N1—C2 | 1.374 (4) | C14—O16 | 1.319 (4) |
| N1—C6 | 1.390 (4) | O16—C17 | 1.442 (4) |

| N1—C19      | 1.477 (4) | C17—C18B       | 1.40 (6)   |
|-------------|-----------|----------------|------------|
| C2—N3       | 1.297 (4) | C17—C18A       | 1.424 (10) |
| C2—C7       | 1.492 (4) | C17—H17A       | 0.97       |
| N3—C4       | 1.385 (3) | C17—H17B       | 0.97       |
| C4—C5       | 1.427 (4) | C18A—H18A      | 0.96       |
| C5—C6       | 1.353 (4) | C18A—H18B      | 0.96       |
| C5—C14      | 1.499 (4) | C18A—H18C      | 0.96       |
| C6—C13      | 1.498 (5) | C18B—H18D      | 0.96       |
| С7—С8       | 1.381 (4) | C18B—H18E      | 0.96       |
| C7—C12      | 1.396 (4) | C18B—H18F      | 0.96       |
| C8—C9       | 1.380 (4) | C19—C20        | 1.515 (4)  |
| С8—Н8       | 0.93      | C19—H19A       | 0.97       |
| C9—C10      | 1.382 (5) | С19—Н19В       | 0.97       |
| С9—Н9       | 0.93      | C20—C21        | 1.522 (4)  |
| C10—C11     | 1.367 (7) | C20—H20A       | 0.97       |
| C10—H10     | 0.93      | C20—H20B       | 0.97       |
| C11—C12     | 1.384 (5) | C21—C22        | 1.508 (5)  |
| C11—H11     | 0.93      | C21—H21A       | 0.97       |
| C12—H12     | 0.93      | C21—H21B       | 0.97       |
| C13—H13A    | 0.96      | C22—H22A       | 0.96       |
| C13—H13B    | 0.96      | C22—H22B       | 0.96       |
| C13—H13C    | 0.96      | C22—H22C       | 0.96       |
| C2—N1—C6    | 118.0 (2) | C18B—C17—O16   | 106.8 (16) |
| C2—N1—C19   | 121.1 (2) | C18A—C17—O16   | 109.9 (4)  |
| C6—N1—C19   | 120.6 (2) | C18B—C17—H17A  | 142.5      |
| N3—C2—N1    | 124.9 (2) | С18А—С17—Н17А  | 109.7      |
| N3—C2—C7    | 116.1 (2) | O16—C17—H17A   | 109.7      |
| N1—C2—C7    | 119.0 (2) | C18B—C17—H17B  | 66.2       |
| C2—N3—C4    | 119.7 (2) | С18А—С17—Н17В  | 109.7      |
| N3—C4—C5    | 116.9 (3) | O16—C17—H17B   | 109.7      |
| N3—C4—S     | 120.2 (2) | H17A—C17—H17B  | 108.2      |
| C5—C4—S     | 122.9 (2) | C17—C18A—H18A  | 109.5      |
| C6—C5—C4    | 121.9 (2) | C17—C18A—H18B  | 109.5      |
| C6—C5—C14   | 120.1 (3) | H18A—C18A—H18B | 109.5      |
| C4—C5—C14   | 118.0 (3) | C17—C18A—H18C  | 109.5      |
| C5—C6—N1    | 118.3 (3) | H18A—C18A—H18C | 109.5      |
| C5—C6—C13   | 123.1 (3) | H18B—C18A—H18C | 109.5      |
| N1—C6—C13   | 118.6 (3) | C17—C18B—H18D  | 109.5      |
| C8—C7—C12   | 119.4 (3) | C17—C18B—H18E  | 109.5      |
| C8—C7—C2    | 118.6 (2) | H18D—C18B—H18E | 109.5      |
| C12—C7—C2   | 121.9 (3) | C17—C18B—H18F  | 109.5      |
| C9—C8—C7    | 120.3 (3) | H18D—C18B—H18F | 109.5      |
| С9—С8—Н8    | 119.8     | H18E—C18B—H18F | 109.5      |
| С7—С8—Н8    | 119.8     | N1—C19—C20     | 112.9 (3)  |
| C8—C9—C10   | 120.2 (4) | N1—C19—H19A    | 109        |
| С8—С9—Н9    | 119.9     | С20—С19—Н19А   | 109        |
| С10—С9—Н9   | 119.9     | N1—C19—H19B    | 109        |
| C11—C10—C9  | 119.7 (3) | C20—C19—H19B   | 109        |
| C11—C10—H10 | 120.1     | H19A—C19—H19B  | 107.8      |
|             |           |                |            |

# supplementary materials

| С9—С10—Н10    | 120.1       | C19—C20—C21      | 109.8 (3)  |
|---------------|-------------|------------------|------------|
| C10-C11-C12   | 120.9 (3)   | C19—C20—H20A     | 109.7      |
| C10-C11-H11   | 119.6       | C21—C20—H20A     | 109.7      |
| C12—C11—H11   | 119.6       | С19—С20—Н20В     | 109.7      |
| C11—C12—C7    | 119.4 (3)   | C21—C20—H20B     | 109.7      |
| C11—C12—H12   | 120.3       | H20A-C20-H20B    | 108.2      |
| C7—C12—H12    | 120.3       | C22—C21—C20      | 113.5 (4)  |
| С6—С13—Н13А   | 109.5       | C22—C21—H21A     | 108.9      |
| С6—С13—Н13В   | 109.5       | C20-C21-H21A     | 108.9      |
| H13A—C13—H13B | 109.5       | C22—C21—H21B     | 108.9      |
| С6—С13—Н13С   | 109.5       | C20—C21—H21B     | 108.9      |
| H13A—C13—H13C | 109.5       | H21A—C21—H21B    | 107.7      |
| H13B-C13-H13C | 109.5       | C21—C22—H22A     | 109.5      |
| O15—C14—O16   | 124.3 (3)   | C21—C22—H22B     | 109.5      |
| O15-C14-C5    | 125.3 (3)   | H22A—C22—H22B    | 109.5      |
| O16—C14—C5    | 110.3 (2)   | C21—C22—H22C     | 109.5      |
| C14—O16—C17   | 117.6 (3)   | H22A—C22—H22C    | 109.5      |
| C18B—C17—C18A | 48 (3)      | H22B—C22—H22C    | 109.5      |
| C6—N1—C2—N3   | 2.4 (4)     | N3—C2—C7—C12     | -112.8 (3) |
| C19—N1—C2—N3  | -171.8 (3)  | N1—C2—C7—C12     | 67.4 (4)   |
| C6—N1—C2—C7   | -177.8 (2)  | C12—C7—C8—C9     | -0.3 (5)   |
| C19—N1—C2—C7  | 8.0 (3)     | C2—C7—C8—C9      | -176.8 (3) |
| N1-C2-N3-C4   | -0.9 (4)    | C7—C8—C9—C10     | -0.3 (5)   |
| C7—C2—N3—C4   | 179.3 (2)   | C8—C9—C10—C11    | -0.2 (6)   |
| C2—N3—C4—C5   | -3.6 (3)    | C9—C10—C11—C12   | 1.3 (6)    |
| C2—N3—C4—S    | 175.89 (19) | C10-C11-C12-C7   | -1.9 (6)   |
| N3—C4—C5—C6   | 7.1 (4)     | C8—C7—C12—C11    | 1.4 (5)    |
| S—C4—C5—C6    | -172.4 (2)  | C2-C7-C12-C11    | 177.7 (3)  |
| N3—C4—C5—C14  | -175.5 (2)  | C6—C5—C14—O15    | 78.1 (5)   |
| S-C4-C5-C14   | 5.0 (3)     | C4—C5—C14—O15    | -99.3 (4)  |
| C4—C5—C6—N1   | -5.7 (4)    | C6—C5—C14—O16    | -100.7 (3) |
| C14—C5—C6—N1  | 176.9 (2)   | C4—C5—C14—O16    | 81.8 (4)   |
| C4—C5—C6—C13  | 175.9 (3)   | O15-C14-O16-C17  | 5.4 (7)    |
| C14—C5—C6—C13 | -1.5 (4)    | C5-C14-O16-C17   | -175.8 (4) |
| C2—N1—C6—C5   | 1.0 (4)     | C14—O16—C17—C18B | 126 (3)    |
| C19—N1—C6—C5  | 175.2 (2)   | C14—O16—C17—C18A | 177.0 (9)  |
| C2—N1—C6—C13  | 179.5 (3)   | C2—N1—C19—C20    | 81.1 (3)   |
| C19—N1—C6—C13 | -6.3 (4)    | C6—N1—C19—C20    | -92.9 (3)  |
| N3—C2—C7—C8   | 63.6 (3)    | N1-C19-C20-C21   | -179.2 (3) |
| N1—C2—C7—C8   | -116.2 (3)  | C19—C20—C21—C22  | -177.8 (4) |





